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Abstract

The goal of this paper is to obtain a high order full discretization of the initial value problem for the linear Schrödinger
equation in a finite computational domain. For this we use a high order finite element discretization in space together with
an adaptive implementation of local absorbing boundary conditions specifically obtained for linear finite elements, and a
high order symplectic time integrator. The numerical results show that it is possible to obtain simultaneously a very good
absorption at the boundary and a very small error in the interior of the computational domain.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the initial value problem for the linear time dependent Schrödinger equation
0021-9

doi:10.

q Th
VA103

* Co
E-m
otuðx; tÞ ¼
�i

c
ðoxxuðx; tÞ þ V ðxÞuðx; tÞÞ; x P 0; t P 0;

uð0; tÞ ¼ 0;

uðx; 0Þ ¼ u0ðxÞ;

ð1:1Þ
where V(x) is the potential and c is constant (in this paper we will suppose that c < 0, the case c > 0 is similar).
There are several applications of (1.1), for example in quantum mechanics [16], optics [24] and seismic wave
propagation [10].
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The study of the well-posedness of (1.1) in the original unbounded domain Rþ ¼ ½0;þ1Þ is not compli-
cated. Take the Hilbert space X = L2(0, +1) with the scalar product
hf ; gi ¼
Z 1

0

f ðxÞgðxÞdx;
and we suppose that V 2 L1(0,1) and we consider DðAÞ ¼ H 2ð0;1Þ \ H 1
0ð0;1Þ. Then, it suffices to take into

account that the operator A : D(A)! X given by
ðAuÞðxÞ ¼ �i

c
ðoxxuðxÞ þ V ðxÞuðxÞÞ
for u 2 D(A) and x 2 (0,1) can be written as A = iA0 + B where A0 is a selfadjoint operator and B is a
bounded perturbation. Therefore A is the infinitesimal generator of a C0 semigroup (see [20]) and we deduce
that (1.1) is well-posed in X.

However, for the numerical approximation of (1.1), we need to restrict the computation to a finite compu-
tational subdomain of Rþ. Therefore, we need to use artificial boundary conditions in order to obtain a prac-
tical numerical scheme. This problem is the subject of a wide number of papers in the literature. It is possible
to find a large list of references in the reviews [17,18,26].

Although these artificial boundary conditions have been studied for all kinds of equations, they are mainly
used for wave propagation problems, including wave equation, hyperbolic systems and Schrödinger equation,
which are the cases focused in [18].

There are three main kinds of methods to obtain a good approximation to the exact solution in the com-
putational domain. The absorbing layers are based in the use of artificial source terms designed to dissipate the
solution arriving at the boundary. The main drawback is that it is necessary to enlarge artificially the compu-
tational domain. There is a resurgence of these techniques, referred to as perfectly matched layer, from the
publication of the paper [9], where an absorbing layer without reflection to the interior domain is proposed
(see also [10] for the case of the Schrödinger equation).

The transparent boundary conditions (TBCs) are obtained with the aim that the solution in the computa-
tional window equals to the exact solution. Usually, the trouble here is that these TBCs can be non-local. This
is the case for (1.1), see for example [5–8,24,25].

Finally, absorbing boundary conditions (ABCs) are defined as an approximation of TBCs in a such a way
that the reflection to the interior of the computational domain is small but with the advantage that these
boundary conditions are now local [11,13,14].

As it is noted in the conclusions of [18], another usual advantage of the ABCs is that they are easier to use,
mainly when the geometry of the artificial boundary can be fixed in a simple way. In [18], the author studies for
the wave equation an adaptive implementation where the order of the ABCs varies automatically with an opti-
mal of the interpolatory nodes. In [1,2] ABCs for the Schrödinger equation discretized in space with finite dif-
ferences are studied. In these works we have found weak instabilities when the order of absorption increases.
The origin of this phenomenon is that the matrices of the semidiscrete problems are non-normal. Therefore,
the fact that the spectral abscissa is negative is a necessary but non-sufficient condition in order to obtain well-
posedness. Therefore, it seems that the previous adaptive strategy could be non-suitable for the Schrödinger
equation, as it is noticed in [18]. As an alternative, we have proved in [3] that it is possible to fix the order of
absorption and to choose adaptively the interpolatory nodes in order to absorb in an optimal way the solution
arriving to the boundary. The trick is to use the classical Prony’s algorithm [19] to approximate the solution.

In this paper we are interested in showing that it is possible to take advantage of the simplicity of the prob-
lems which arise with these ABCs in order to obtain a very good approximation along with a very high
absorption at the boundary.

The first trouble is that in the literature the ABCs for spatial discretizations of (1.1) are only obtained for
low order finite difference discretizations which are not suitable to obtain an efficient spatial discretization.
Therefore, we obtain in Section 2 TBCs for a discretization by means of linear finite elements. Similarly to
the case of finite differences, these TBCs are non-local; then, also in Section 2, we construct local ABCs for
linear finite elements and we derive an adaptive technique for its implementation which is similar to that used
in [3] for second order finite differences. The numerical experiments show that the absorption is very good and
similar to that observed in [3].
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However, we show in Section 4 that the accuracy of the spatial discretization in the interior of the compu-
tational domain is also similar to the one in [3] and it cannot be considered satisfactory. Therefore, we show
that it is possible to combine the use of these new ABCs implemented with linear finite elements near the
boundary, with cubic finite elements in the interior of the computational domain. We remark that it is plain
to generalize these techniques for the use of other high order finite element discretizations through the weak
formulation of (1.1).

We also analyze the time discretization in Section 3. We remark that, for TBCs, the discretizations in the
literature are usually of low order because of the difficulty of the implementation of a non-local boundary con-
dition [5–8,24,25]. In our case, the implementation is straightforward and we consider a symplectic Runge–
Kutta method, but other usual time integrators can be easily considered. Now, the incorporation of ABCs
leaves to a problem which is not already Hamiltonian, therefore we discuss how to choose the time integrator
depending of its stability region.

In this way, we achieve a very good absorption at the boundary and simultaneously a small error of the full
discretization.

Finally, we note that these ideas can be extended to other cases. For example, we have studied in [4] the use
of ABCs for finite differences discretizations of a nonlinear cubic Schrödinger equation with good results of
absorption. We think that it is possible to extend the implementation in [4] to a high order numerical scheme,
as it is shown here for the linear case. On the other hand, it is also possible to consider the 2D-case. For
instance, ABCs for a rectangular boundary are obtained in [1], although a better option, in forthcoming
works, could be to consider a circular boundary in order to avoid the difficulties at the corners.

2. Space discretization with finite elements

We denote V ¼ H 1
0ð0;þ1Þ and, for u, w 2V, we consider the sesquilinear form a(u,w) given by
aðu;wÞ ¼ � i

c
�
Z þ1

0

oxuðxÞoxwðxÞdxþ
Z þ1

0

V ðxÞuðxÞwðxÞdx
� �

:

Then we consider the weak formulation of (1.1):
find uðtÞ 2V such that uð0Þ ¼ u0 and
du
dt
;w

� �
¼ aðu;wÞ; for each w 2V: ð2:1Þ
We want to solve numerically this problem using the finite element method for its spatial discretization. How-
ever, the first inconvenient is that this problem is defined in an infinite spatial domain and in order to integrate
it numerically it is necessary to work in a finite subdomain and to use artificial boundary conditions. For the
space discretization of (2.1), we consider a family of spaces Vh, h > 0, approximating V and based on the
finite element method. Then we have the following semidiscrete version of (2.1): given u0;h 2Vh, an approx-
imation of the initial datum u0 2 X, we want to find uhðtÞ 2Vh, t > 0 such that
uhð0Þ ¼ u0;h and
duh

dt
;wh

� �
¼ aðuh;whÞ; wh 2Vh: ð2:2Þ
Since the initial value problem (1.1) is defined in an infinite domain, the usual spaces of finite elements Vh

are not finite dimensional. Let us suppose that fqjg
1
j¼1 are the shape functions defining Vh in such a way that

we have uhðtÞ ¼
P1

j¼1ujðtÞqj for t P 0. We consider a finite subdomain [0,xr] such that, for t P 0, if uhðtÞ 2Vh

satisfying supp(uh(t)) � [0, xr], then uhðtÞ ¼
PN

j¼1ujðtÞqj, where N 2 N is fixed. In this way, writing
u0;h ¼

PN
j¼1ujð0Þqj, we obtain the system of ordinary differential equations
M
d

dt
uðtÞ ¼ AuðtÞ;

uð0Þ ¼ u0;

ð2:3Þ
where u(t) = [u1(t), . . . ,uN(t)]T, u0 ¼ ½u1
0; . . . ; uN

0 �
T and the matrices M and A are finite and are given by

M = [Mij] = [Æqi,qjæ] and A = [Aij] = [a(qi,qj)], except for the last equations which depend on the boundary
conditions that had been used. The choice of this boundary conditions is the subject of the following
subsection.



412 I. Alonso-Mallo, N. Reguera / Journal of Computational Physics 220 (2006) 409–421
2.1. Absorbing boundary conditions for linear finite elements

Since in general the solution of (1.1) is not supported in a finite subdomain of [0,+1), in this subsection we
construct ABCs at x = xr when we take linear finite elements as space Vh for the discretization of Eq. (1.1).
We also assume that supp(u0) � [0, xr]. Let us take a positive parameter h = xr/N > 0, and consider the grid of
[0,+1) given by xj = jh, j P 0. Let us define
qiðxÞ ¼
0 for x 62 ðxi�1; xiþ1Þ;
q1

i ðxÞ ¼ 1
h ðx� xi�1Þ for x 2 ðxi�1; xiÞ;

q2
i ðxÞ ¼ 1

h ðxiþ1 � xÞ for x 2 ðxi; xiþ1Þ:

8><>: ð2:4Þ
We are interested on the case of a constant potential V in order to obtain ABCs for this space discretization.
Then, taking into account that
Z xiþ1

xi
ðq2

i ðxÞÞ
2 dx ¼

Z xiþ1

xi
ðq1

iþ1ðxÞÞ
2 dx ¼ h

3
;Z xiþ1

xi
q2

i ðxÞq1
iþ1ðxÞdx ¼ h

6
;Z xiþ1

xi

d

dx
q2

i ðxÞ
� �2

dx ¼
Z xiþ1

xi

d

dx
q1

iþ1ðxÞ
� �2

dx ¼ 1

h
;Z xiþ1

xi

d

dx
q2

i ðxÞ
d

dx
q1

iþ1ðxÞdx ¼ �1

h
;

we get for j P 1,
1

6

d

dt
uj�1 þ 4

d

dt
uj þ d

dt
ujþ1

� �
¼ �i

ch2
uj�1 � 2uj þ ujþ1
� 	

� iV
6c

uj�1 þ 4uj þ ujþ1
� 	

: ð2:5Þ
We denote by ~ujðkÞ the Laplace transform of uj(t), that is, for Re(k) > 0,
~ujðkÞ ¼
Z 1

0

expð�ksÞujðsÞds:
Since we can suppose that uj(0) = 0, j P N � 1,
gd

dt
ujðtÞ ¼ k~ujðkÞ � ujð0Þ ¼ k~ujðkÞ;
and from the previous discretization we obtain
ð6þ sÞ~uj�1ðkÞ þ ð�12þ 4sÞ~ujðkÞ þ ð6þ sÞ~ujþ1ðkÞ ¼ 0; ð2:6Þ

where
s ¼ h2ðV � ickÞ: ð2:7Þ
Theorem 2.1. The TBC for the right boundary x = xr is given by
~uN�1ðkÞ ¼ r�ðsÞ~uNðkÞ; ð2:8Þ

where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
r�ðsÞ ¼
�2sþ 6� i 3sð12� sÞ

sþ 6
:

Proof. The solution of (2.6) is given by
~uj ¼ C1rþðsÞj þ C2r�ðsÞj;
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where C1, C2 are constants and
r�ðsÞ ¼
�2sþ 6� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sð12� sÞ

p
sþ 6

; ð2:9Þ
being
ffiffi�p the squared root with real positive part, are the roots of the characteristic polynomial equation
ðsþ 6Þr2 þ ð�12þ 4sÞr þ ðsþ 6Þ ¼ 0: ð2:10Þ

Now, we want to prove that, in this case, jr�(s)j > 1 and jr+(s)j < 1. We denote s = x + iy, where x = Re(s) and
from (2.7) we deduce that y = Im(s) > 0.

We first prove that the roots (2.9) have modulus 1 only and only if s 2 R and 0 6 s 6 12. If s = 12, it is
obvious that the unique root of (2.10) is r = �1. On the other hand, if s 6¼ 12, we consider the change of
variable
r ¼ 1� q
1þ q

; ð2:11Þ
which transforms (2.10) into the new polynomial equation
ð12� sÞq2 þ 3s ¼ 0; ð2:12Þ
which roots are easily calculated with the formula q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3s=ð12� sÞ

p
. Since the transformation (2.11) ap-

plies the right semiplane Re(q) > 0 (respectively Re(q) < 0) into the interior (respectively exterior) of the unit
circle jrj < 1, Eq. (2.10) have roots of modulus 1 when (2.12) has purely imaginary roots. This happens when
�3s/(12 � s) is a negative real number, or equivalently, when y = 0 and x 2 [0,12).

On the other hand, the expression (2.9) define continuous (and holomorphic) functions when the variable s

is such that 3s(12 � s) is not a real negative number, that is when y = 0 and x 62 [0, 12]. Therefore, (2.9) are
continuous functions of s when Im(s) > 0.

Finally, it is easily proved that jr�(s)j > 1 for a particular value of s such that Im(s) > 0. From the continuity
for Im(s) > 0, we deduce that jr�(s)j > 1 for any s such that Im(s) > 0. In a similar way, jr+(s)j < 1 for any s

such that Im(s) > 0.
Since we are considering the right exterior domain j P N � 1 it should be ~uj ¼ C1rj

þ. In particular,
~uN�1 ¼ C1rN�1

þ ¼ r�1
þ ~uN ¼ r�~uN . h

We are going to construct local ABCs from (2.8). With this aim, we consider an approximation to r�(s) by a
rational function q(s) of exact degree (2,1) that interpolates it at certain nodes s1, s2, s3, s4,
r�ðsÞ � qðsÞ ¼ c0 þ c1sþ c2s2

1þ c3s
: ð2:13Þ
If we now replace this approximation in the TBC (2.8), and we take into account (2.7), we obtain
ð1þ h2c3ðV � ickÞÞ~uN�1 ¼ ðc0 þ h2c1ðV � ickÞ þ h4c2ðV � ickÞ2Þ~uN :
Finally, taking inverse Laplace transform, we get the ABCs
d0uN�1 þ d1

d

dt
uN�1 ¼ d2uN þ d3vN þ d4

d

dt
vN ; ð2:14Þ
where we have introduced the new variable vN such that
d

dt
uN ¼ vN ; ð2:15Þ
and
d0 ¼ 1þ h2c3V ; d1 ¼ �ich2c3; d2 ¼ c0 þ h2c1V þ h4c2V 2; d3 ¼ �ich2ðc1 þ 2h2c2V Þ; d4 ¼ �h4c2c2:
In order to determine suitable nodes of interpolation, let us take an initial condition u0(x) 2 L2(0,xr), and
consider its Fourier series
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u0ðxÞ ¼
X1

k¼�1
ak expð2pikx=xrÞ:
Then, we have
u0ðxjÞ ¼
X1

k¼�1
akeisk hj;
with sk = 2pk/xr, and the solution of the semidiscrete problem (2.5) can be written as
ujðtÞ ¼
X1

k¼�1
akeisk hje�ixðsk hÞt;
where each term in the series is a plane wave like
wjðtÞ ¼ a� expðig�j� ixðg�ÞtÞ; ð2:16Þ

with a� 2 C and g� 2 R. In order that this plane wave is a solution of (2.5), x(g) should be determined by the
dispersion relation
xðg�Þ ¼ 1

c
V � 6ð1� cos g�Þ

h2ð2þ cos g�Þ

� �
:

Taking Laplace transform in (2.16), we have
~wjðkÞ ¼ a�
expðig�jÞ
kþ ixðg�Þ :
Therefore, due to the singularity of this expression, a suitable (real) node to absorb this plane wave is
s� ¼ h2ðV � cxðg�ÞÞ ¼ 6ð1� cos g�Þ
2þ cos g�

2 ½0; 12�:
This reasoning suggests to make the change of variable s = 6(1 � cosg)/(2 + cosg) in (2.13), getting
r�ðgÞ � qðgÞ ¼
c0 þ c1

6ð1�cos gÞ
2þcos g þ c2

6ð1�cos gÞ
2þcos g

� �2

1þ c3
6ð1�cos gÞ

2þcos g

; ð2:17Þ
where r�(g) = cosg � i sing if sing P 0 (g 2 [0,p]) and r�(g) = cosg + ising if sing < 0 (g 2 [�p, 0)). The
approximation (2.17) should be exact at four nodes g = g1, g2, g3, g4. A suitable node to absorb (2.16) would
be g*. Finally, the new change of variable t = tan(g/2) gives rise to
r�ðgÞ ¼
1� it
1þ it

� qðgÞ ¼ f ðt2Þ if sin g P 0() t P 0; ð2:18Þ

r�ðgÞ ¼
1þ it
1� it

� qðgÞ ¼ f ðt2Þ if sin g < 0() t < 0; ð2:19Þ
where
f ðt2Þ ¼
a0 þ a1

t2

3þt2 þ a2
t4

ð3þt2Þ2

1þ a3
t2

3þt2

;

with a0 = c0, a1 = 12c1, a2 = 122c2, a3 = 12c3. We impose that the approximation ((2.18) and (2.19)) is equal at
four nodes t1, t2, t3, t4. If tj < 0, (2.19) should be exact for t = tj, that is to say that (2.18) should we exact for
t = �tj = jtjj. Then, we can conclude that (2.18) should be exact for t = jtij, i = 1, . . . , 4. On the other hand,
now, a suitable node to absorb (2.16) would be t* = tan(g*/2).

The choice of the four nodes (which will determine the coefficients of the ABCs) is done in an adaptive way,
using Prony’s method [19], similarly to [3]. That is, the coefficients of the ABCs will change in each time step in
order to absorb the numerical solution that is arriving to the boundary at that time. The idea is that for xj near
the right boundary we approximate
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ujðtÞ �
X4

k¼1

akeisk hje�ixðskhÞt:
Once the nodes t1, t2, t3, t4 haven been chosen, the coefficients aj, and therefore those for the ABCs (2.14),
are given by
a0 ¼ ð3f 2
3 þ 2f 4ð9þ 6if1 � 3f 2 þ f4Þ � 3f 3ð3f 1 þ ið�3þ f2 þ f4ÞÞÞ=den;

a1 ¼ ð27f 2
1 þ 18f 2

2 þ 45if3 þ 9f 2
3 � 3if1ð9þ 9f 2 � 12if3 � 7f 4Þ þ 36f 4 � 3if3f4

þ 4f 2
4 þ f2ð�3if3 � 18ð3þ f4ÞÞÞ=ð�denÞ;

a2 ¼ ð2ð81þ 27f 2
1 þ 9f 2

2 � 18f 1f3 þ 3f 2
3 þ 18f 4 þ f 2

4 � 6f 2ð9þ f4ÞÞÞ=den;

a3 ¼ 3ð9f 2
1 þ f3ð�if2 þ f3 þ ið�3þ f4ÞÞ þ if1ð�9þ 9f 2 þ 6if3 � 5f 4ÞÞ=ð�denÞ;
where den ¼ 3ðf 2
3 þ f3ð�3f 1 � ið�3þ f2 � f4ÞÞ � 2if1f4Þ and
f1 ¼ t�1 þ t�2 þ t�3 þ t�4;

f2 ¼ t�1t�2 þ t�1t�3 þ t�2t�3 þ t�1t�4 þ t�2t�4 þ t�3t�4;

f3 ¼ t�1t�2t�3 þ t�1t�2t�4 þ t�1t�3t�4 þ t�2t�3t�4;

f4 ¼ t�1t�2t�3t�4;
where t�j ¼ jtjj for j = 1, . . . , 4.
As it will be shown in Section 4, with the use of ABCs given by (2.14) we obtain a good absorption of the

solution at the right boundary, similar to the one observed in [1,2] for second order finite differences.

2.2. Space discretization: cubic finite elements

Our next purpose is to consider a better spatial discretization in the interior domain while preserving the
good absorption at the boundary that we have obtained with the ABCs (2.14) for linear finite elements.

With this purpose, we are going to consider cubic finite elements for the spatial discretization of the interior
domain. Moreover, in order to use the ABCs (2.14) we will have to consider linear finite elements near the
right boundary and fit them with the cubic finite elements for the interior domain.

Let us define
r1ðxÞ ¼ ðxþ 1Þ2ð�2xþ 1Þ; ~r1ðxÞ ¼ xðxþ 1Þ2;
r2ðxÞ ¼ ðx� 1Þ2ð2xþ 1Þ; ~r2ðxÞ ¼ xðx� 1Þ2;

rjðxÞ ¼
0 for x 62 ðxj�1; xjþ1Þ;
rj

1ðxÞ ¼ r1ðx�xj

h Þ for x 2 ðxj�1; xjÞ;
rj

2ðxÞ ¼ r2ðx�xj

h Þ for x 2 ðxj; xjþ1Þ;

8><>:
~rjðxÞ ¼

0 for x 62 ðxj�1; xjþ1Þ;
~rj

1 ¼ h~r1ðx�xj

h Þ for x 2 ðxj�1; xjÞ;
~rj

2 ¼ h~r2ðx�xj

h Þ for x 2 ðxj; xjþ1Þ;

8><>:

and qj as in (2.4). Notice that rj, ~rj are the shape functions for the cubic finite elements and qj for the linear
finite elements. Since we need to fit the cubic finite elements with the linear ones, we define the functions
sJ ðxÞ ¼
0 for x 62 ðxJ�1; xJþ1Þ;
rJ

1ðxÞ for x 2 ðxJ�1; xJ Þ;
qJ

2ðxÞ for x 2 ðxJ ; xJþ1Þ;

8><>:
~sJ ðxÞ ¼

0 for x 62 ðxJ�1; xJ Þ;
~rJ

1ðxÞ for x 2 ðxJ�1; xJ Þ;

(
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where 1 < J < N is fixed. In this way, we will consider the set of shape functions
f~r0; r1; ~r1; r2; ~r2; . . . ; rJ�1; ~rJ�1; sJ ;~sJ ; qJþ1; . . . ; qNg:
Then, the spatial semidiscrete approximation to the solution of (1.1) is
uhðx; tÞ ¼
XJ�1

j¼1

ujðtÞrjðxÞ þ
XJ�1

j¼0

~ujðtÞ~rjðxÞ þ uJðtÞsJ ðxÞ þ ~uJðtÞ~sJ ðxÞ þ
XN

j¼Jþ1

ujðtÞqjðxÞ;
and will have to satisfy the equations
duh

dt
; rj

� �
¼ aðuh; r

jÞ; j ¼ 1; . . . ; J � 1;

duh

dt
; ~rj

� �
¼ aðuh; ~r

jÞ; j ¼ 0; . . . ; J � 1;

duh

dt
; sJ

� �
¼ aðuh; s

J Þ;

duh

dt
;~sJ

� �
¼ aðuh;~s

J Þ;

duh

dt
; qj

� �
¼ aðuh; q

jÞ; j ¼ J þ 1; . . . ;N � 1:

ð2:20Þ
These equations along with (2.15) and (2.14) give rise to a system of ordinary differential equations like (2.3)
with
u ¼ ½~u0; u1; ~u1; u2; . . . ; uJ ; ~uJ ; uJþ1; . . . ; uN ; vN �:

Notice that in Eq. (2.20) we have to compute some integrals whose integrand is the product of the potential

V(x) and two shape functions. When the potential is not constant we have used for the numerical experiments
of Section 4 a five point Gaussian quadrature formula to approximate those integrals.

Usually, the node xJ will be very near to the right boundary, so that the discretization in the interior domain
is basically done with cubic finite elements. Moreover, in practice we are not going to consider the same spatial
step size for the cubic finite elements than for the linear ones. In this way, we will have the nodes xj = jh for
j = 0, . . . ,J with the spatial step size h = xJ/J and xjþJ ¼ xJ þ j~h for j ¼ 1; . . . ; ~J , with step size ~h ¼ ðxr � xJ Þ=~J .
In practice we will take ~J quite small (~J ¼ 30 for instance) and ~h smaller than h.

3. Time discretization: symplectic method

The choice of the time discretization is essential in order to obtain good numerical results. We have previ-
ously carried out the space discretization, obtaining in this way a system of ordinary differential equations
which can be integrated in time with any known time integrator.

An important issue related with this time discretization is the reformulation of the differential equation in
(1.1) as a classical Hamiltonian system [15,16,23]. In this way, it is possible to use numerical time integrators
originally devised for classical mechanics [21,22]. For this, the differential equation in (1.1) is rewritten as
i
o

ot
uðtÞ ¼ bH uðtÞ; ð3:1Þ
where the Hamiltonian operator is bH ¼ 1
c ð o2

ox2 þ V ðxÞÞ:
After the space discretization with suitable boundary conditions, for example periodic or vanishing Dirich-

let boundary conditions we obtain the N-state matrix representation of (3.1),
i
dcðtÞ

dt
¼ HcðtÞ; ð3:2Þ
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where cðtÞ 2 CN is a column vector and H is in many cases a N · N real symmetric matrix. Now, introducing
the two components p(t) = Imc(t), q(t) = Rec(t), the Eq. (3.2) is equivalent to the classical Hamiltonian equa-
tions of motion
dp

dt
¼ � oH

oq
:¼ fðp; qÞ; dq

dt
¼ þ oH

op
:¼ gðp; qÞ; ð3:3Þ
with the real Hamiltonian function Hðp; qÞ ¼ 1
2
ðqT � ipTÞHðqþ ipÞ.

From this formulation, it is particularly interesting the use of symplectic integrators [12,15,16,22,23], which
are usually implicit. However, the Hamiltonian H is separable, i.e. H is of the form H(p,q) = H1(p) + H2(q),
or, equivalently, the system (3.3) can be written in separable form
dp

dt
¼ fðqÞ; dq

dt
¼ gðpÞ: ð3:4Þ
Therefore, it is possible to consider the use of symplectic partitioned Runge–Kutta methods with an important
advantage: the computation can be carried out in an explicit form.

However, when we use our ABCs, all the previous considerations are slightly lost. For example, the system
of ordinary differential Eq. (2.3) to be solved is not Hamiltonian because the solutions are absorbed at the
right boundary and the energy cannot be conserved. Moreover, this system is not separable and the explicit-
ness of the partitioned Runge–Kutta methods is lost.

Another trouble with the use of an explicit partitioned Runge–Kutta method is its stability region. As an
example, we consider the fourth order method studied in [23] and specified by the real arrays of coefficients
(b1,b2,b3,b4,b5)[B1,B2,B3,B4].

Suppose that we use this method to integrate the scalar test equation dy/dt = ky, k 2 C. Since the eigen-
values of the Schrödinger equation are purely imaginary, we are mainly interested in the case k = il, with
l 2 R.

For this, we use the notation y = q + ip, where q = Re(y), p = Im(y) and we obtain the equivalent separable
system dq/dt = �lp, dp/dt = lq. For a given step size k > 0, the numerical solution [qn,pn]T � [q(nk), p(nk)]T is
given by [qn,pn]T = Rn(kl)[q0,p0]T, where R(z) is the stability matrix of the partitioned Runge–Kutta method.
Then we consider the stability interval I of this method, defined as I ¼ fz 2 R : qðRðzÞÞ 6 1g, where q(R(z))
is the spectral radio of R(z). We have checked numerically that I is approximately the finite interval jzj 6 1.88.
This stability interval is not suitable for our problem because the systems of ordinary differential equations
obtained after the space discretization are very stiff, i.e. the eigenvalues are very large, corresponding to the

arbitrarily large purely imaginary eigenvalues associated to the operator �i
c

o2

ox2 þ V ðxÞ
� �

.

Moreover, due to the use of ABCs, the eigenvalues of the ordinary differential system are not purely imag-
inary. Therefore, it is convenient to consider the stability region S of this method, defined as
S ¼ fz 2 C : qðRðzÞÞ 6 1g. However, we have also checked that S ¼ I for the previous partitioned
Runge–Kutta method, and therefore these ABCs may produce numerical instabilities if we use this time
integrator.

Then, we have considered in the present paper the use of the fourth order implicit symplectic Runge–Kutta
method studied in [12,21]. As it is mentioned in [12], all the semiplane Re(z) 6 0, except a small island almost

circular, is contained in the stability region of this method, which is now defined as fS ¼ fz 2 C :j rðzÞ j6 1g,
where r(z) is the stability function of the method. This property is very convenient for our problem.

4. Numerical experiments

For the numerical experiments of this paper we are going to consider the equation
iotuðx; tÞ ¼
�1

2l
oxxuðx; tÞ þ V ðxÞuðx; tÞ; x 2 ½0; xr�; ð4:1Þ
where V(x) is a Morse potential V(x) = D(1 � exp(�a(x � 3)))2 (notice that this notation is slightly different
from that used in (1.1)). As in [15,16] the parameters are taken to be consistent with an HF molecule,
l = 1744.95008 a.u., D = 0.225084521 a.u. and a = 1.1741 a.u. Notice that V(x) has a minimum at x = 3
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and V(x)! D as x!1. For the right boundary x = xr we will consider the ABCs given by (2.14). In the left
boundary x = 0, for our purposes it is enough to use a vanishing Dirichlet boundary condition. This choice
does not cause reflections to the interior domain because we are going to consider initial conditions that give
rise to solutions of the equation travelling to the right, or because the Morse potential V(x) will not allow the
solution to arrive to x = 0.

First, let us see now the behaviour of ABCs (2.14) with some examples. For the following experiments we
will consider Eq. (4.1) with constant potential V = D and with initial condition
u0ðxÞ ¼
Xnw

k¼1

u0kðx� LkÞ; ð4:2Þ
where each addend u0k is given by the function with Gaussian profile
u0kðxÞ ¼ expðigkxÞ expð�cx2Þ ð4:3Þ

evaluated in x � Lk, that is, displaced to the right Lk units (Lk P 0), and where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dla2=2

p
(as in [15,16])

and gj = l tan (bj). Therefore, the exact solution for Eq. (4.1) with initial condition (4.2) is
uðx; tÞ ¼
Xnw

k¼1

ukðx� Lk; tÞ;
where
ukðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4itc
c

q exp
�ðxþ 2gkt=cÞ2

1
c � 4it

c

þ igk xþ gkt
c

� �
þ i2lVt

c

 !
ð4:4Þ
is the exact solution with initial condition (4.3) and c = �2l.
For the discretization in space studied in Section 2.2, we also need the derivative of the initial condition,
d

dx
u0ðxÞ ¼

Xnw

k¼1

exp igkðx� LkÞ � cðx� LkÞ2
� �

ðigk � 2cðx� LkÞÞ:
In Fig. 1 we have taken nw = 2, xr = 6, b1 = 20�, b2 = 15�, L1 = 3, L2 = 4, so that the solution consists of
two waves that arrive to the right boundary almost simultaneously. We have first used (dashed line) linear
finite elements for the spatial discretization of the interior domain and the symplectic implicit method of Sec-
tion 3 for the time integration. We have taken h = 5.0d � 5 and a time step k = 2.5d � 4. We observe that the
solution travels through the interior domain and when it arrives to the right boundary it is absorbed by the
effect of the ABCs. We have measured the discrete L2-relative error and we appreciate that although the
absorption is very good, the error in the interior domain is too big.
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Fig. 1. Local ABCs for linear finite elements. Logarithm of the relative error as a function of time.
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Secondly, we have carried out the spatial discretization of the interior domain with cubic finite elements,
maintaining the ABCs for linear finite elements at the right boundary. This can be seen in Fig. 1 with contin-
uous line for h � 5.0d � 4, ~h ¼ 1:0d � 5 (see end of Section 2 for the meaning of h and ~h) and the same dis-
cretization in time as for the previous experiment. Observe that the error in the interior domain is much
smaller for cubic finite elements even when we have used a bigger value for h. On the other hand, the absorp-
tion at the right boundary is very similar to the previous experiment.

In Figs. 2 and 3 we see the situation when we consider the initial condition (4.2) with nw = 1, xr = 6,
b1 = 20� and L1 = 3 and we use cubic finite elements for the discretization in space with h � 5.0d � 4,
~h ¼ 1:0d � 5 and the same discretization in time as for the previous experiments. More precisely, in Fig. 2
we can see for a fixed time (t � 6) the error (that is, the modulus of difference between the exact and numerical
solution), and the numerical solution. At this moment, the solution has not yet arrived to the boundary. We
can observe in Fig. 3 the situation at t � 12 when the solution should have disappeared from the computa-
tional window.

Let us see a numerical experiment for which we have considered Eq. (4.1) with the Morse potential. As ini-
tial condition we have taken (4.2) with nw = 1, b1 = �20� and L1 = 3. In Fig. 4 we see the modulus of the
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Fig. 2. Error and modulus of the numerical solution for a single Gaussian wave arriving to the right boundary.
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Fig. 3. Error and modulus of the numerical solution for a single Gaussian wave after the absorption at the right boundary.
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Fig. 4. Modulus of the numerical solution (—) and Morse potential (- - -).
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numerical solution at four different fixed times when we discretize the equation with cubic finite elements along
with the ABCs (2.14) in the way we have described in Section 2. In the first three figures we can also see the
Morse potential with dashed line. We have considered the interior domain [0, 6], spatial step sizes h = 5.0d � 4,
~h ¼ 5:0d � 5 and we have set ~J ¼ 30 so that xJ is very close to xr = 6. The time discretization has been done
with the implicit symplectic integrator described in Section 3 with step size k = 5.0d � 4. For t = 0 we can see
the modulus of the initial condition. At t � 10 the solution has already moved to the left boundary and is start-
ing to move to the right. When t � 25.5 the solution is a wave arriving to the right boundary and is being
absorbed by the ABCs. Finally, at t � 31 the exact solution would have disappeared from the computational
window and what we observe in Fig. 4 for this time is the reflection caused by the ABCs and the error due to
the spatial discretization in the interior domain.
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